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Abstract. We develop a generalized Ginzburg-Landau theory for second harmonic generation (SHG) in
magnets by expanding the free energy in terms of the order parameter in the magnetic phase and the
susceptibility tensor in the corresponding high-temperature phase. The non-zero components of the SHG
susceptibility in the ordered phase are derived from the symmetries of the susceptibility tensor in the
high-temperature phase and the symmetry of the order parameter. In this derivation, the dependence of
the SHG susceptibility on the order parameter follows naturally, and therefore its nonreciprocal optical
properties. We examine this phenomenology for the magnetoelectric compound Cr2O3 as well as for the
ferroelectromagnet YMnO3.

PACS. 42.65.-k Nonlinear optics – 75.50.Ee Antiferromagnetics

Second Harmonic Generation (SHG) is a very useful tech-
nique to study the nonlinear optical properties [1] in mag-
netic materials. The recent observation [2,3] of nonrecipro-
cal optical effects (i.e., not invariant under time reversal
operation) in the magnetoelectric material Cr2O3 below
the Néel temperature TN has been of great importance in
the study of antiferromagnetic (AFM) ordering by light.
With the help of SHG, photographs of the antiferromag-
netic domains [3,4] in Cr2O3 were obtained what confirms
that these experiments can distinguish between the two
magnetic states that are related to each other by the time
reversal operation, and therefore its nonreciprocity. These
observations can be explained by an interference effect be-
tween a time-symmetric magnetic dipole contribution and
a time-antisymmetric electric dipole contribution [3]. Soon
after these experiments were done, a microscopic theory
was proposed [5] which could explain quantitatively the
non-reciprocal effects observed in Cr2O3. It was shown
that the electric dipole contributions were linearly pro-
portional to the antiferromagnetic order parameter giving
rise to the time-antisymmetric character to the electric
dipole tensor. The study of this dependence is of cru-
cial importance in order to understand the non-reciprocal
character of the SHG tensors. The derivation of a micro-
scopic theory for a specific effect, in our case SHG, can be
rather complicated depending on the properties of the ma-
terial under study [5,6]. Concrete information of the SHG
process in materials where a transition takes place, i.e.
paramagnet-antiferromagnet or paraelectric- ferroelectric,
can be obtained at a simpler level, i.e. by considering only
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symmetry arguments. In particular, we are interested in
investigating the dependence of the SHG susceptibilities
in the ordered phase on the order parameter.

A powerful phenomenological theory suitable to de-
scribe phase transitions is the Ginzburg-Landau theory.
The Ginzburg-Landau approach is based on the existence
of an order parameter in the ordered phase and on sym-
metry considerations [7]. Pershan in 1963 [8] showed that
the tensors for nonlinear electro- and magneto-optic effects
could be derived from a phenomenological time-averaged
free energy. It is our purpose in this paper to extend the
formulation of Pershan by including the order parameter
explicitly in the expansion of the free energy for SHG.
We shall show that the non-zero components of the SHG
susceptibility tensor in the ordered phase are naturally
obtained from the symmetry of the susceptibility tensor
in the high-temperature phase and the symmetry of the
order parameter. Once the dependence of the SHG suscep-
tibility tensor on the order parameter is known, the non-
reciprocal optical properties below the transition temper-
ature follow. We explicitly verify this formulation in the
magnetoelectric compound Cr2O3 as well as the hexago-
nal ferroelectric-antiferromagnetic material YMnO3.

A convenient starting point in order to describe the op-
tical nonlinearities is given by a time-averaged free energy
F as proposed by Pershan [8]. A dipole expansion of the
induced current J = ∂P/∂t+ c∇×M−∂(∇·Q)/∂t+ . . . ,
(in Gaussian units) where P, M and Q are respec-
tively the electric dipole polarization, the magnetization
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and the electric quadrupole polarization, leads to [8]

F = −2Re
n∑
ν=1

[ E∗(ων) ·P(ων) + H∗(ων) ·M(ων) ] , (1)

where we have discarded the electric quadrupole and
higher-order terms and a constant contribution. Here
E(ων), P(ων), H(ων) and M(ων) are respectively the
Fourier components of the electric field, electric dipole
polarization, magnetic field and the magnetization and ν
denotes the number of partial waves. The usual relations

P(ων) = −∂F/∂E∗(ων)
M(ων) = −∂F/∂H∗(ων)

are fulfilled. The electric dipole polarization and the mag-
netization are, in general, nonlinear functions of E (and
H) which may be expanded into a power series in E (and
H). The second order term for the electric dipole polar-
ization is

Pi(2ω) = χ
(ED)
ijk (2ω, ω, ω)Ej(ω) Ek(ω) (2)

which corresponds to the SHG electric dipole contribution
(ED). The corresponding free energy is then (see Eq. (1)):

F (ED) = −
[
χ

(ED)
ijk (2ω, ω, ω)E∗i (2ω)Ej(ω)Ek(ω)

+χ∗ijk
(ED)(2ω, ω, ω)Ei(2ω)E∗j (ω)E∗k(ω)

]
. (3)

Summation over repeated indices is implicit in the above
formulas.

As a second example, we consider the magnetic dipole
contribution (MD) to SHG,

Mi(2ω) = χ
(MD)
ijk (2ω, ω, ω)Ej(ω)Ek(ω), (4)

leading to

F (MD) = −
[
χ

(MD)
ijk (2ω, ω, ω)H∗i (2ω)Ej(ω)Ek(ω)

+χ∗ijk
(MD)(2ω, ω, ω)Hi(2ω)E∗j (ω)E∗k(ω)

]
. (5)

F (MD) is the free energy corresponding to the MD contri-
bution to SHG. Both the ED and the MD contribute to
the source term S, i.e., as [(∂2P/∂t2) + c∇× (∂M/∂t)] in
the wave equation for the electric field, derived from the
Maxwell’s equations in classical electrodynamics [3]. The
measured output intensity in a nonlinear optical experi-
ment is I ∝ |S|2 and once the SHG susceptibility in the
ordered phase is known, possible non-reciprocal properties
of the system may be derived.

In the context of the antiferromagnetic Cr2O3 it has
been observed [3] that χ(ED)

ijk exists only in the ordered
phase (T < TN) and it has been shown [5,6] that it is lin-
early proportional to the antiferromagnetic order param-
eter, as it should be if we had defined a Ginzburg-Landau
free energy for the ordered phase. In the framework of

the classical Ginzburg-Landau approach to phase transi-
tions the allowed terms contributing to the free energy fol-
low from the symmetry of the order-parameter and from
the symmetry of the lattice [7,9]. It is therefore of inter-
est to ask oneself whether one can combine the standard
Ginzburg-Landau approach for the magnetic properties of
e.g. Cr2O3 with the expressions (3, 5) in order to obtain
a more general formulation for the nonlinear magneto-
optical properties of a given compound.

In order to generalize the Ginzburg-Landau for-
mulation to study the nonlinear optical properties in
antiferromagnets we first note that the (generalized)
Ginzburg-Landau functional has to obey the symmetry of
the high-temperature phase, as the (spontaneous) break-
ing of this symmetry is inherent in the solution which is a
minimum of the Ginzburg-Landau functional. As an illus-
tration, we consider a hypothetical magnetic dipole contri-
bution to SHG which is only present in the ordered phase.
Let us assume the following symmetries for the order pa-
rameter: i) it is a c-tensor, i.e. antisymmetric under the
time reversal operation; and ii) it is a (real) axial tensor
of first rank (a pseudovector), i.e. Ol. In this case

F = − [χijkl(T > TN)H∗i EjEk
+ χ∗ijkl(T > TN)HiE

∗
jE
∗
k

]
Ol (6)

would be a valid expression for the combined free-energy,
where χijkl(T > TN) is the susceptibility tensor in the
paramagnetic phase. The expression in the parenthesis in-
dicates that the susceptibility is above the transition tem-
perature TN. It should be noted here that the free energy
is a i-scalar, i.e., a scalar invariant under the time rever-
sal operation. This implies that the susceptibility tensor in
the paramagnetic phase has to be a polar i-tensor of fourth
rank. Now, comparing equation (6) with equation (5), one
would obtain the following relation between the SHG sus-
ceptibility and the order parameter:

χSHG
ijk (T < TN) = χijkl(T > TN)Ol. (7)

It is clear from the above expression that from the knowl-
edge of the order parameter and the symmetries of the
susceptibility tensor [10] in the paramagnetic phase, it
is possible to obtain all the non-zero components of the
SHG susceptibility in the ordered phase. Moreover, the
SHG susceptibility tensor below the transition tempera-
ture becomes directly proportional to the order parameter,
which will ultimately manifest in the non-reciprocal opti-
cal effects in the system. In what follows, we examine this
in detail for the cases of the magnetoelectric compound
Cr2O3 and of the ferroelectric-antiferromagnetic material
YMnO3.

Cr2O3, in its paramagnetic phase (above TN ≈ 307 K),
crystallizes in the centrosymmetric point group 3m. The
unit cell contains four Cr3+ ions, which occupy equiva-
lent z-positions along the optical axis. This structure has
a centre of inversion and parity considerations allow only
axial i-tensors of odd rank and polar i-tensors of even
rank. Thus, above TN, SHG electric dipole effects are for-
bidden but magnetic dipole effects are allowed. Below TN,
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Table 1. Classification of the components of the vectors m, l,
in accordance with the irreducible representations of the crys-
tallographic point group 3m.

Irreducible representations
A2g mz

A1g l1z
A1u l2z
A2u l3z

Eg

�
mx, my

l1x, l1y

�

Eu

�
l2x, l2y
l3x, l3y

�

the four spins in the unit cell order along the optical axis
in a non-centrosymmetric AFM structure (the spin or-
der being, up, down, up, down) which leads to two types
of domains transformed into each other by time reversal
symmetry. Both, space and time reversal symmetry oper-
ations are separately broken by the spin ordering but the
combination of both symmetries remains a symmetry of
the crystal. The magnetic point group of Cr2O3 being 3m
allows new tensors, i.e., polar c-tensors of odd rank and
axial c-tensors of even rank. Thus, electric dipole effects
due to polar c-tensors of odd rank are allowed below TN.

In order to construct the nonlinear free energy for
SHG, one needs to know the order parameter in Cr2O3.
This can be achieved following Dzyaloshinskii’s [11]
derivation for the Landau theory of second order phase
transitions [9]. We assign a mean spin Sβ (β = 1, 2, 3, 4)
to each of the four Cr3+ ions. Out of the Sβ one can form
the following linear combinations m, l1, l2 and l3:

m = S1 + S2 + S3 + S4

l1 = S1 − S2 − S3 + S4

l2 = S1 − S2 + S3 − S4

l3 = S1 + S2 − S3 − S4. (8)

The components of the vectors m and lα (α = 1, 2, 3) can
be classified according to the irreducible representations
of the paramagnetic group 3m as given in Table 1 [9,12].
The components mz, l1z, l2z, l3z transform according to
the one-dimensional representationsA2g, A1g, A1u, A2u of
the point group 3m. The x and y components of the vec-
tors m and l1 transform according to the two-dimensional
representation Eg; and the x and y components of the vec-
tors l2 and l3 transform according to Eu. We make now
the following key observation:

The order parameter of a magnet is given by that ir-
reducible representation of the paramagnetic point group
which is invariant under the symmetries of the magnetic
group.

This statement can be considered as a generalization
of von Neumann’s principle (see [10]) and follows from the
observation that the thermodynamic expectation value of
any combination of the constituent spins Sβ which is not
invariant under the magnetic group, i.e. 3̄m for the case
of Cr2O3, can be shown to vanish identically. For Cr2O3

the irreducible representation which is invariant under 3̄m
is A1u, i.e. l2z.

Thus, the order parameter for Cr2O3, which is the
staggered magnetization constructed from l2z is a c-axial
scalar. The description given by l2z corresponds to a
collinear ordering (up,down,up,down) which is the spin
ordering in Cr2O3. Now, we can write down the free en-
ergy due to the electric dipole contribution as,

F = − [χijk(T > TN)E∗i EjEk
+ χ∗ijk(T > TN)EiE∗jE

∗
k

]
l2z (9)

and therefore the SHG susceptibility tensor can be ob-
tained as,

χSHG
ijk (T < TN) = χijk(T > TN)l2z , (10)

i.e. a c-polar tensor of third rank is obtained from the
tensorial product of an i-axial tensor of third rank with
a c-axial scalar (or pseudoscalar). Since the susceptibility
tensor χijk above TN is an i-axial tensor of third rank,
we know all the non-zero components from the symme-
try analysis [10]. Thus, using equation (10), one obtains
all the non-zero components of the SHG χ, which are,
χyyy = −χyxx = −χxyx = −χxxy. Furthermore, the sym-
metry of χ(T > TN) in the paramagnetic phase dictates
that χSHG(T < TN) is linearly dependent on the order pa-
rameter, which is the reason why one observes the AFM
domains through SHG in Cr2O3.

The second example we want to illustrate is YMnO3.
YMnO3 is a ferroelectromagnetic material whose crys-
tal structure above the Curie temperature Tc ≈ 913 K
is presumably centrosymmetric and described by the
point group 6/mmm. The elementary unit cell contains
six Mn3+ ions. Below Tc, YMnO3 orders ferroelectri-
cally and the charge ordering breaks inversion symme-
try. The YMnO3 structure is then described by the non-
centrosymmetric point group 6mm. The vector P(SP) =
(0, 0, P (SP)

z ) of spontaneous polarization is directed along
the six-fold z-axis. The magnetic properties of YMnO3

arise from the manganese ions Mn3+ in the high spin state
S = 2. Below the Néel temperature, TN ≈ 74 K, the spins
of the six Mn3+ ions in the unit cell are ordered antifer-
romagnetically in a triangular structure perpendicular to
the polar axis. The crystallographic, magnetic and elec-
tric properties of the hexagonal YMnO3 and the other
rare-earth manganites were studied in the sixties and the
related data are available in [13]. New data concerning di-
electric, magnetic, infrared and Raman studies have been
also reported recently [14,15].

In the electric dipole approximation, SHG is allowed
in YMnO3 below Tc due to the inversion symmetry break-
ing by the ferroelectric ordering of charges [16]. Thus,
from the symmetry of the susceptibility tensor in the
paraelectric phase and that of the order parameter which
is the spontaneous polarization P

(SP)
z along the six-fold

axis, one should be able to write down a free energy like
equation (9). 6/mmm is centrosymmetric, which implies
that in the paraelectric phase only polar tensors of even
rank and axial tensors of odd rank are allowed. P (SP)

z

is an i-polar first rank tensor (vector) directed along z.
Therefore, in order to obtain an i-polar third rank tensor
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in the ferroelectric phase which should describe the
SHG electric dipole contribution, only contractions of
the 6/mmm symmetry polar tensors with odd powers of
the order parameter are allowed. In the lowest order, the
free energy can be written as,

F = − [χijkz(T > Tc)E∗i EjEk
+ χ∗ijkz(T > Tc)EiE∗jE

∗
k

]
P (SP)
z (11)

such that the SHG susceptibility tensor in the ferroelectric
phase is obtained as,

χSHG
ijk (Tc > T > TN) = χijkz(T > Tc) P (SP)

z . (12)

Here the susceptibility tensor χijkl above the Curie tem-
perature Tc, i.e. in the paraelectric phase, is an i-polar
tensor of fourth rank. Now, from the symmetry analy-
sis [10] of this tensor, one gets the non-zero components
of χ(T > Tc) in the paraelectric phase which when con-
tracted with the order parameter give rise to all the non-
zero components of χSHG in the ferroelectric phase, i.e.,
χzzz and χxxz(3) = χyyz(3) ((3) denotes all possible per-
mutations of the 3 indices). Moreover, it follows from the
above expression that the SHG susceptibility in the ferro-
electric phase is a linear function of the ferroelectric order
parameter.

As already mentioned earlier, YMnO3 belongs to the
crystal class 6mm in the ferroelectric phase. Below TN, the
spins of the six magnetic ions in the unit cell order anti-
ferromagnetically and perpendicular to the six-fold axis,
i.e. three spins are arranged in a triangular structure on
planes normal to the six-fold axis and separated from each
other by a distance equal to half the lattice period along
the hexagonal axis. The magnetic ordering in this mate-
rial is non-collinear but coplanar and can be determined
from the exchange interactions among the spins only, sim-
ilar to that in Cr2O3. The corresponding magnetic group
is 6mm. Following Nedlin [17] and Pashkevich et al. [18],
we consider the following linear combinations of spins:

s = S1 + S2 + S3 + S4 + S5 + S6

l = S1 + S2 + S3 − S4 − S5 − S6

τ 1 = S1 − ω∗S2 − ωS3 − S4 + ω∗S5 + ωS6

τ 2 = −τ ∗1
σ1 = S1 − ω∗S2 − ωS3 + S4 − ω∗S5 − ωS6

σ2 = σ∗1, (13)

where ω∗ is the complex conjugate of the phase factor ω =
eiπ/3. The magnetic irreducible representations are given
by some linear combinations ψ of the spin components (see
Tab. 2). Since the spin ordering is coplanar, ψ may easily
be expressed in terms of the components of the vectors s,
l, τ and σ written in the cyclic coordinate frame [17,18]
as follows.

s = e−s+ + e+s− + ezsz , (14)

where s± = sx ± isy and similarly for l, τ and σ. Here
the ei’s are the unit vectors along the axes of the crystal

Table 2. Classification of the components of the vectors s, l,
τ and σ in accordance with the irreducible representations of
the crystallographic point group 6mm.

Irreducible representations

A1 ψ1 = −(τ−1 + τ+
2 )

A2
ψ2 = (τ−1 − τ+

2 )
ψ′2 = sz

B1
ψ3 = (σ−1 + σ+

2 )
ψ′3 = lz

B2 ψ4 = (−σ−1 + σ+
2 )

E1

(ψ5,I = s+, ψ5,II = s−)
(ψ5,III = σ−2 , ψ5,IV = σ+

1 )
(ψ5,V = τ z1 , ψ5,VI = −τ z2 )

E2

(ψ6,I = l+, ψ6,II = l−)
(ψ6,III = −τ−2 , ψ6,IV = τ+

1 )
(ψ6,V = σz1 , ψ6,VI = −σz2)

coordinate frame (the z-axis coincides with the six-fold
axis of the crystal lattice).

From Table 2 we learn that ψ1, · · · , ψ4 transform ac-
cording to the one-dimensional representations A1, A2,
B1 and B2 whereas ψ5 and ψ6 transform according to the
two-dimensional irreducible representations E1 and E2 of
the paramagnetic and ferroelectric group 6mm. The irre-
ducible representation which remains invariant under all
symmetry elements of the magnetic group 6mm is B1,
therefore ψ3 is a good candidate to be defined as the an-
tiferromagnetic order parameter [18] for YMnO3.

ψ3 is a complicated combination of the spin compo-
nents of the six ions in the unit cell. Let us build a more
intuitive object which belongs to the same B1 irreducible
representation and where not only spin components but
also vector components are introduced, whose physical in-
terpretation may be that of a local field on each Mn3+

ion. Thus, similar to the spins S1 · · ·S6, one can intro-
duce i-polar vectors V1 · · ·V6 (which might correspond
to local planar displacements of the Mn3+ ions) and form
the linear combinations p, q, η and ρ analogous to s, l,
τ and σ in equation (13). These linear combinations of
the i-polar vectors also follow the irreducible representa-
tions of the spatial group 6mm. From the direct product
representations of the spin pseudovectors and that of the
i-polar vectors (which of course is reducible), one obtains
the following combination Λ = σ+

1 η
−
2 + σ−2 η

+
1 which be-

comes invariant under all the symmetry operations of the
magnetic group. Thus Λ should be equivalent to ψ3 in the
sense that they belong to the same irreducible one dimen-
sional representation. Furthermore, from the generating
matrices of the magnetic group, one can also construct
an invariant c-axial quantity in lowest order, which in the
present case is a tensor of rank three, R3 (in 6mm, all the
c-axial tensors of rank smaller than three vanish). Now
expanding the free energy in terms of R3 one obtains in
lowest order,

F = − [χijklmn(T > TN)E∗i EjEk
+ χ∗ijklmn(T > TN)EiE∗jE

∗
k

]
Rlmn (15)
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and thus the SHG susceptibility tensor can be obtained as,

χSHG
ijk (T < TN) = χijklmn(T > TN)Rlmn. (16)

It should be noted that the c-axial tensor R3 has only one
independent component, i.e., Ryyy = −Rxxy(3) which can
be identified as the order parameter discussed above. Per-
forming the sum over l, m and n in equation (16) explicitly
we then obtain an alternative expression for the allowed
matrix elements contributing to SHG in the antiferromag-
netic phase as

χSHG
ijk (T < TN) = [χijkyyy(T > TN)− χijkxxy(T > TN)

−χijkxyx(T > TN)− χijkyxx(T > TN)]ψ3. (17)

Thus, from the symmetry properties of the sixth rank
i-axial tensor χijklmn above TN [19], together with
equation (17), we get all the non-zero components of
the SHG susceptibility tensor for T < TN, which are,
χSHG
xxx = −χSHG

yyx = −χSHG
yxy = −χSHG

xyy (as one can easily
verify, see [19]).

Since YMnO3 is characterized by two order parame-
ters, one for the paraelectric-ferroelectric transition and
the other for the paramagnetic-antiferromagnetic transi-
tion, it is natural to ask about the coupling between them.
We observe here that the SHG tensor in the antiferro-
magnetic phase, as given by equation (17), is directly pro-
portional to the even-rank i-axial tensor χijklmn which is
not allowed in the high-temperature group 6/mmm for
T > Tc, which is centrosymmetric. Therefore, χijklmn
needs to be proportional to the ferroelectric order param-
eter (compare Eq. (11) and Eq. (12)):

χijklmn(T > TN) = χijklmnz(T > Tc)P (SP)
z , (18)

where χijklmnz is an i-axial tensor of rank seven which
is allowed in 6/mmm. Comparing equation (18) with
equation (17) we find immediately:

χSHG
ijk (T < TN) = χijklmnz(T > Tc)Rl,m,nP (SP)

z

= [χijkyyyz(T > Tc)− χijkxxyz(T > Tc)

−χijkxyxz(T > Tc)− χijkyxxz(T > Tc)]ψ3P
(SP)
z .

It is therefore possible to derive all the components of
the SHG susceptibility tensor below TN from the non-zero
components of χijklmno together with both order param-
eters. It is also clear from the above equation that the
SHG susceptibility below TN is directly proportional to
the bilinear combination of both order parameters which
in principle, could be verified from experiments.

The method described in the present manuscript to
study the nonreciprocal optical effects in the magnetic ma-
terials through SHG is purely phenomenological and based
on symmetry considerations. Therefore, it should be pos-
sible to generalize this phenomenology to other hexagonal
rare-earth manganites RMnO3 where R = Ho, Er, Tm,
Yb, Lu etc.

In conclusion, we summarize the main findings of the
present paper. A phenomenological Ginzburg-Landau the-
ory has been developed for second harmonic generation in

materials which undergo one or more phase transitions by
expanding the free energy in terms of the order parame-
ter/s and the susceptibility tensor in the high-temperature
phase. We have shown how to obtain explicitly the SHG
susceptibility components as a function of certain sus-
ceptibility tensors allowed in the high-temperature phase
and of the order-parameter. We have carried through
this prescription for the magnetoelectric compound Cr2O3

as well as for the ferroelectric-antiferromagnetic material
YMnO3. We also argue that this analysis can be extended
to the other hexagonal rare-earth manganites.
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